PROCEEDINGS OF THE IEEE, VOL. 54, NO. 12, DECEMBER, 1966

1687

Some Recent Work in Artificial Intelligence

R. J. SOLOMONOFF, MEMBER, IEEE

Abstract—This paper will review certain approaches to artifical intelli-
gence research—mainly work done since 1960. An important area of research
involves designing a machine that can adequately improve its own perfor-
mance as well as solve other problems normally requiring human intelligence.
Work in heuristic programming that seems most relevant to this goal will be
discussed at length.

Important subproblems are devising techniques for self-improvement, the
general problem of deciding what task to best work on next in a network of
tasks, and the general problem of how to mechanize learning or inductive
inference. Some work in linguistics and pattern recognition is directly con-
cerned with the induction problem.

Another area of research that will be treated is simulation of organic
evolution.

1. INTRODUCTION

N IMPORTANT GOAL of artificial intelligence re-
A search is to devise machines to perform various
tasks normally requiring human intelligence. Prov-
ing mathematical theorems, learning to translate languages,
playing good games of chess, and learning to improve its
own performance are a few of the kinds of things such a
machine is expected to perform. Although each of such tasks
has certain peculiarities that characterize it uniquely, many
workers in this field feel that there are certain characteristics
that are common to most tasks requiring intelligence, and
they have tried to work on problems in which these char-
acteristics are prominent. Some tasks common to many
artificial intelligence problems are: initial description and
transformation of a problem into a more readily solvable
form, heuristic search and its associated subproblems,
breaking a difficult problem into several easier problems,
and learning through induction from past experience.

The present paper will emphasize work in two principal
areas. Because of its access to a source of powerful, though
neglected, heuristics for artificial intelligence, simulation of
organic evolution will be discussed at some length. Some
recent work of this sort looks promising in its ability to
solve simple problems using only the simplest heuristic
devices. Solution of more difficult problems will be possible
when more of the devices used in organic evolution are
understood and applied. ,

Heuristic programming will also be discussed in some de-
tail. In this particular approach to artificial intelligence, the
researcher usually tries to program a computer to solve
problems in ways similar to those that he uses himself. I
feel that the path of research most likely to achieve a high
level of intelligent machine behavior, is that of devising a
machine that can effectively work on the problem of improv-

Manuscript received August 17, 1966; revised October 17, 1966. This
rescarch was sponsored by USAF Contract AF-19(628)-5975; AFSOR
Contract AF-49(638)-376, Grant AF-AFOSR 62-377, and Public Health
Service NIH Grant GM 11021-01.

The author is with the Rockford Research Institute, Cambridge, Mass.

ing its own performance, as well as work on problems that
are more directly useful.

T will deal mainly with heuristic programming work that
seems most directly related to this goal, as well as important
associated problems in inductive inference and the solution
of networks of tasks.

Simulation of networks of neurons, optical character
recognition, and other biological systems have inspired a
large part of present-day artificial intelligence research, but
I will not discuss such work at any length, since at the

_present time, it appears that none of it is capable of dealing

with problems as compléx as self-improvement.

Minsky [44] has written an excellent critical review of
artificial intelligence work up to about September, 1960.
This paper will be largely limited to work done since then.

II. HEURISTIC PROGRAMMING

Heuristic programming started with Newell, Simon, and
Shaw’s “‘Logical Theorist” [52]. Gelernter’s geometry theo-
rem prover [31], Newell, Shaw and Simon’s “General
Problem Solver” [53], and Samuel’s [58] checker playing
program followed. ,

The programs of Newell et al. and Gelernter had little
learning in them, other than use of theorems that had been
previously proved by them. Except for this, their ability
to work problems did not improve with experience.

Samuel’s program, on the other hand, employed two im-
portant kinds of learning. The first kind was rote learning.
It remembered board configurations that it had analyzed
in the past, as well as the results of the analyses. It also had a
set of measurements for the quick, approximate evalua-
tion of board configurations, such as the number of pieces
ahead or the “centralness” of the white pieces. Each such
measurement was given a weight in this approximate
evaluation. To decide on a possible move, its possible im-
plications were played out several moves into the future,
the approximate evaluation function was applied to the
resultant board configurations, and the results were used to
evaluate the current board position more accurately. As the
machine played more games, it used this experience, as well
as an interesting kind of internal calculation, to modify
the weights in its evaluation function.

Samuel’s program has been remarkably successful. After
some improvements, it now plays a master level game. It
did not, however, come close to beating the world cham-
pion. Samuel feels that this would require a marked increase
in program proficiency. He is now attempting to improve
its learning capacity by taking triplets of the measurements
used for board configurations, and assigning learnable
weights to them (Samuel [59)).

Another important step was the invention of GPS (Gen-
eral Problem Solver) of Newell et al. [53]. This was a pro-

1688

gram meant to generalize the methods of their “Logical
Theorist,” so that it might be applied to a greater variety of
problems. The problems it could solve were of the follow-
ing form: One is given an initial state of a system—say a set
of mathematical postulates. One is given a final desired state
of the system—say a theorem to be proved. One is given a
set of operators, such as rules of inference, that can be
successively applied to the system to yield new states. Such
states might be new theorems or new rules of inference. The
problem is to find a-sequence of operators to be applied
successively to the original state to yield the desired state.
GPS uses a set of observations, called ““differences” be-
tween the current state and the desired state, to decide which
operator to try next. Application of an operator yields a new
current state and a new set of differences. This recursively
yields a new set of operators to try. If one operator doesn’t
“reduce” the differences, another is alternatively tried.
This hill-climbing technique (see Minsky [44 Jand Minsky
and Selfridge [47] for good discussions of hill climbing) is

augmented by various devices that devise intermediate sub-

goals, or sets of sub-goals.

Newell, Shaw, and Simon applied GPS principally to
theorem proving at first, but since then, their approach has
been generalized in various ways and applied to a variety of
problems. Newell and Ernst [51] have written a review of the
various generalizations and kinds of heuristic devices used
by various workers. Some examples are Slagle’s symbolic
integration program (Slagle [66]) and Tonge’s assembly
line balancing procedure (Tonge [75]). Ernst {18] has
generalized GPS in several ways and applied it to eleven
different kinds of problems.

At this point, it seems clear that heuristic programming
can be used to solve a great variety of problems. We may
then ask whether such programs could be given the task
of improving themselves in speed or otherwise optimizing
their own operation. The criterion of success at self-im-
provement will not be vacuously circular if the program also
has to solve problems different from self-improvement.

While Samuel’s checker program does indeed improve its
performance with time, its general methods remain about
the same. An important step toward self-improvement was
the modification of GPS by Newell et al. [54] so that it
might learn to improve the set of “differences” that it uses
in helping to decide what operator to try next. I will not de-
scribe the system in detail, but an analogy with hill climbing
will help explain its method of operation.

In the general hill-climbing problem, one has several
parameters, x;, discrete, continuous, or a;mixture of both.
One has an evaluation function F(x,, x,, " - -). What s the
best strategy of trials to use, if one wants a set of x;’s that
will maximize F? A common strategy i§ to pick a set of
x;’s, and obtain its F value. Then try random points “‘near”
the original x;’s for the next trial. If a better F'is obtained,
use this new set of x;’s for one’s next base. If not, then try a
new random point in the neighborhood of the original set
of x;’s.

This random mutation method will be discussed later

PROCEEDINGS OF THE IEEE

DECEMBER

in the section on induction with respect to evolutionary

models.

In most hill-climbing problems, F is a continuous func-
tion of its arguments. In Newell’s system, however, there is
no F, but instead, a method for telling which of two sets of X'
values are better—so one can tell if one trial mutation is
better than or worse than another. This was done by devis-
ing a good set of criteria to decide if one set of differences
was an improvement over another.

One of the advantages of Newell’s scheme is that it
pointed out which of the x;’s were most likely to need chang-
ing. This technique, when it is applicable, is a great advance
over the random choice of changes in the x;’s.

While Newell’s scheme has been hand simulated with
some success, there were some initial limitations (described
in Newell [49]) in the GPS system that made it impractical
to run his program within GPS on a computer. Since then,
these difficulties appear to have been resolved. In Newell
[50] another difference improving scheme for GPS is
briefly outlined, but neither method has yet been pro-
grammed. Some further evidence that GPS can deal with
problems like self-improvement, is afforded by Simon’s [65]
heuristic compiler. The problem to be solved here is that of
writing a computer program. The desired program can be
described to the compiler in several forms. First, as the in-
put and desired output. Second, as a description of what
the program must do, using a set of terms different from
the set of operators the machine will use to implement the
program. Third, as a mixture of the first two methods. For
the second method, an algorithmic compiler could be used,
but is not.

The main point of this work was to show the generality
of GPS. It might, however, be possible to use this program
with the first mode of input only, give it a small set of desired
input-output pairs, and ask that it construct a minimal
program to transform the inputs into the outputs. If there is
an incomplete set of examples, the compiler will have to
perform some inductive inference upon this set.

The induction problem is treated in just this form by
Amarel [4], [5]. There are many important ideas in his
work. First in his realization of the importance that the lan-
guage (in this case, a set of operators) be adequate for the
task of interest. In much work in induction (pattern rec-
ognition, in partlcular) the languages used to describe
regularities in the data are woefully inadequate for any but
the simplest concepts. One is reminded by Ashby’s “prin-
ciple of requisite variety.” Paraphrased, it says that if you
are looking for a door knob, and you have a barrel of
assorted junk, it is well to have evidence that there are door
knobs in the barrel, before looking for them there. Minsky
[45] also discusses the adequacy of languages.

Another important element is Amarel’s use of sub-
routines that have been useful in old programs as good
trial components for new programs. Also, he develops
transition probabilities between these subroutines, so he can
build up larger subroutines. Both of these learning tech-
niques can reduce tremendously ‘the time spent in search-

1966

ing for an adequate program. An carlier form of this was
proposed by Selfridge [62].

Importance of ordering of the data given to a machine
is emphasized. The order in which examples are given can
contain just as much heuristic information as any trick that
more directly reduces search time (Solomonoff [71]).

He tries to find short programs that link the known input

to the known output examples. He does this because it takes .

less time to find such programs. There is, however, a much
more important reason that he overlooks.

The short programs are more likely to extrapolate better.
Given a training sequence of input-output pairs, it is easy
to construct a table rapidly that will map one into the other,
but will have negligible chance of extrapolating properly to
new data. Such a table can be viewed as a “longer program’
than a short sequence of operators connecting the input and
output. This point will be discussed further in the section
on inductive inference.

Although Amarel hasn’t programmed any of his theories,
his ideas and his analysis of them are important.

A general problem solving system with integrated learn-
ing features has been programmed by Hormann (the 1965
paper [36] gives latest description; [35] is an abridged ver-
sion of it; [33] and [34] give important details).

Hormann’s program may be broken down into several
mechanisms or routines. Some of these are sets of abstrac-
tion and characterization routines that take the input prob-
lem and translate it into a form that the rest of the program
is more likely to be able to work with. Proper “representa-
tion” can often determine whether a problem is solvable or
not (Amarel [6], [7]). Ideally, if a problem is not solvable in
reasonable time by the rest of the system, it should be possi-
ble for the administrative routine to ask the abstraction and
characterization routines for a better (hopefully) representa-
tion of the problem.

The programming and problem oriented mechanisms
taken together form a small GPS-like device—perhaps most
similar in form to Simon’s [65] heuristic compiler. It at-
tempts to sove problems in a very direct way without using
sub-goals. Its own goals may, however, have been devised
for it by the planning mechanism, and can be sub-goals to-
ward some larger goal. |

The planning mechanism looks at a problem, then tries to
find a sub-goal or a plan with several sub-goals to simplify
the problem. The importance of sub-goals in drastically re-
ducing heuristic search time is discussed by Minsky [44].

The induction mechanism incorporates all of the learning
routines in the program. It does the learning for the abstrac-
tion and characterization routines, as well as the planning,
programming, and problem oriented mechanisms. Learning
is implemented through a comparison of the present prob-
lem of one of the mechanisms or routines with earlier prob-
lems. Since all induction is performed by the same induction
mechanism, it should be ultimately possible for the machine
to bring all past experience in any mechanism or routine to
bear on any present problem in the same or any other
mechanism or routine.

SOLOMONOFF: ARTIFICIAL INTELLIGENCE

1689

While Hormann uses several interesting induction de-
vices, they are few in number, and certainly not capable,
even in theory, of recognizing all conceivable regularities
in a body of data. This limitation could, however, be over-
come by using a “complete” language to describe regular-
ities to be used in induction. It is also necessary to have
methods for devising trial “‘regularity recognition devices”
within this language, that do not limit the power of the
language. Up to the present time, there have been three sys-
tems that have used complete languages to construct induc-
tive hypotheses—the finite state machines used by Fogel
et al. [26] for simulation of evolution, the rewrite rules used
by Solomonoff [71] for arithmetic induction, and the gen-
eral set of computer instructions used by Kilburn et al. [38]
to extrapolate alphanumeric sequences. While each of these
systems is, in theory, capable of discovering any describable
hypothesis, in all cases the limited heuristics used make only
the simplest kinds of hypotheses practically accessible:.

Hormann’s device is administrated by a “‘mechanism co-
ordinator” that calls on various subroutines when they are
needed.

Much recent work on this program has been in developing
“secondary learning” capabilities—in which the trainer can
“tell” things to the machine directly, rather than give in-
formation only in the form of a training sequence of prob-
lems of increasing difficulty. This is in the spirit of McCarty’s
[43] idea that in order for a machine to be able to learn
something, it must be capable of being told it.

There are, however, difficulties associated with secondary
learning. If the machine is told how to do a problem, there
is no assurance that it will generalize this ability in any use-
ful way—unless. the trainer is familiar with the particular
generalization devices used by the machine and has picked
the tutorial example accordingly.

Usually if the trainer knows that much about the ma-
chine, he can devise a suitable ordinary (primary) training
sequence for it to accomplish at least the same things.

The above remarks apply equally well to machine or
human learning.

Altogether, Hormann’s seems to be the most general
problem solver programmed that has much learning in it.

Slagle’s [68] program is also very general, and though its
learning is of a very restricted kind, it is still important. To
place this work in proper perspective, let us consider
Slagle’s 1964 paper [67] on networks of tasks. I shall de-
scribe a problem type that is a sub-class of the type that
Slagle considers. This sub-class is the type we usually find
in heuristic search problems.

We are given N subsets of M different tasks. The M tasks
are A; (i=1, 2,--- M) and the kth subset of tasks is
[4su), k=1,2,---Nand j=1, 2, - - - N, there being N,
members of the kth subset. A given task may occur in more
than one subset.

The goal of interest is either to work all of the tasks in one
subset, or to know for certain that at least one task in each
subset is impossible.

It takes effort E; to work on task A4,, and after that effort

1690

has been expended, one has a probability p; of having suc-
cessfully completed that task, and a probability 1—p; of
finding that the task is impossible. '

The problem is to find a strategy for choosing the first
and all subsequent tasks to work on, such that one’s ex-
pected total effort in attaining the goal is minimal.

It is possible to write a formal solution to the problem
but, for any reasonable number of tasks, the computation
time is prohibitive.

The relevance to heuristic search is that an ordinary
" search tree with various sub-goals in it presents a problem
similar to Slagle’s.

Slagle’s 1964 paper [64] gives an easily implemented
solution to certain important cases, and good approxima-
tions for a larger set of cases.

In order to make good statistical estimates of E; and P;
in a real task net, it is useful to generalize Slagle’s problem
somewhat. We can associate with each task, A4;, two func-
tions of effort. Gi(E) is the probability that after effort
has been expended, the task will have terminated with
either success or knowledge of impossibility of success.
GL(FE) is the probability that if it terminates with effort E,
the result will be success. ‘

For many tasks of interest, G;(c0) < 1; i.e., it is possible
to expend an arbitrary amount of effort on the task without
its terminating.

Some reasonable functional forms for the G’s are:

GiB) = a(l — e ¥T),
GL(E) = b, a and b being constants.

A constraint commonly occurring in real task nets is
that the tasks are partially ordered, so that certain tasks
cannot be worked before certain others have terminated.

Of much importance are correlations between various
tasks. Here the knowledge of success or failure after effort
E on the ith task will affect the forms of G curves for other
tasks.

There are two very important kinds of correlation. Con-
sideration of correlations between ancestral tasks can pre-
vent one from going into loops or staying in one area of the
tree for an inordinately long time. ’

Consideration of “sibling” correlation prevents the par-
ent task from appearing to be spuriously attractive.

In Slagle’s task net solution, one chooses the best task to
work on and continues until it is completed, before starting
on a new task. If the more general G(E) functions are used
one will often take up a new task and temporarily suspend
work on an old one that has not resolved itself after an ex-
cessively large amount of effort has been spent on it.

Slagle’s 1965 paper [68] considers a very general prob-
lem solver in which he has, by statistical study, obtained the
E’s and p;’s for all of the tasks in the net. Superficially, the
problem looks identical to that of his 1964 paper [67], but a
deeper analysis seems to indicate some differences. At any
rate his method of approximate solution differs markedly
from that of his 1964 paper [67], and seems to be far more
complex. For each task that might be worked on, he com-

PROCEEDINGS OF THE IEEE

DECEMBER

putes a figure of “merit,” then works on that task with
most “merit.” The merit of each task depends on the E; of
that task, and on the p;’s of that and various other tasks in
the net. It is, however, independent of all other E;’s in the
net. I believe that this later independence is wrong, how-
ever, and have been able to discover a commonly occurring
counter-example.

Some work in operations research involving networks of
tasks of the sort discussed here has been done by Eisner
[17] and De Baum [14]. Scott and Hopkins [60] review
some of this work.

Evans has written a program for recognizing geometric
analogies such as are used in “intelligence tests” ([19]is the
main reference; [20] is an abridgement that leaves out

‘many important ideas). A sequence of 3 pictures is given,

labeled A4, B, and C, respectively. Each picture will consist
of one or more simple geometric figures in various relative

_positions. The question to be answered is “Figure A4 is to

Figure B as Figure C is to which of the answer ?”—there are
5 possible answer pictures shown.

The program first takes the 8 pictures as given, and de-
scribes them in its own internal language—usually telling
what the various geometric figures are, their relative sizes,
which are similar to which, their relative positions, which
are inside which, etc. From this data, it is usually possible
to describe several ways in which figure A4 is related to
figure B. The machine then tries to apply these relations be-
tween C and each of the 5 possible answers in turn. If there
are several answers that fit, the one involving the “most
specific rule” is chosen.

The problem worked is an induction problem of a very
useful kind and the type of reasoning Evans uses can be -
applied to very difficult problems in heuristic program-
ming. Suppose we have found that if we are in situation 4,
the best thing to do is B, and we have a lot of experience
with 4 and B. ’

Next, situation C arises, and we have had little experience
with it. What shall we do? One of the best trial actions can
be obtained by finding or creating an action D, such that
Cis to D as 4 is to B. Ordinarily there will be much am-
biguity in the choice of D, but it is often resolvable by other
criteria.

A field related to heuristic programming is the computer
simulation of human cognitive behavior. Up to the present
time, the kinds of behavior simulated have been fairly
simple. The models used certainly do not yet add sig-
nificantly to the work that has been discussed in the present
paper.

There has been somewhat of a division in artificial in-
telligence work between those, such as H. Simon, who are
primarily interested in how the human mind works, and
others, such as Minsky, who are mainly interested in writ-
ing a program for a very intelligent machine. My own ori-
entation is with Minsky, but I feel that we should try to
make our machines’ operations correspond with those of
humans, for the preliminary part of the work, since there is
somewhat more likelihood that we can debug a complex
machine if it thinks a bit like we do.

1966

In review of the work on heuristic programming, GPS,
Hormann’s, Slagle’s, and Amarel’s systems all seem capable
of sufficient generality to work on the problem of devising
new heuristics for themselves. In addition, Hormann,
Slagle and Amarel do have learning features integrated into
them. Though in Slagle’s system, this consists only of
parameter readjustment, its application to networks of
tasks touches on problems common to all heuristic search
programs.

In all of the learning systems mentioned, the kinds of self-
improvement accessible to the machines have been quite
limited. Most of the heuristics we can describe (in fact most
of the heuristics used in these programs) could not have con-
ceivably been discovered by any of these systems. The
effective languages for describing learnable heuristics within
each system have been too weak, and the heuristics for
finding heuristics have been too weak. The discussions of
Newell et al. [54] and Amarel [4], [5] of hierarchies of lan-
guages and Minsky [45] on power of languages are of some
value here. We still need to know the kinds of heuristics we
need to find heuristics, as well as what languages can

~readily describe them. We must then devise suitable train-
ing sequences for our systems, so that using the heuristic-
finding heuristics we have given them, they can find new
heuristics.

It is not difficult to devise languages that are ““universal”
in that they can describe anything that is describable by any
other language. Since a universal language has facilities for
defining arbitrary things, it can, by making suitable defini-
tions, describeany object or set of objects very briefly. One
must, however, exercise care in devising definitions. Each
must be fairly short, usually using the names of other entities
that it has been found useful to define. If, in this sense, the
definitions are not “short,” then it is less likely that these
definitions will be useful in the future. Inductions made
using concepts having “long” definitions will tend to be
poor. Solomonoff ([73], pp. 231-240) describes an induc-
tion system which devises definitions of subsequences of
symbols. The question of when a definition is too “complex”
or “unlikely” is discussed quantitatively with respect to its
use in prediction.

With respect to task nets, Slagle has only begun work on a
very difficult, complex problem. A few areas of needed
research are: how best to parametrize the statistical char-
acteristics of a task with respect to success and failure prob-
abilities after a certain time; how to parametrize correla-
tions between various tasks in the net; obtaining reasonable
approximation methods for deciding what task to work en
next; and how to obtain the statistical parameters of a task
on the basis of past experience with related tasks.

There are several important possible developments of
Evans’ geometric analogy program. The first would be.to
apply it to induction problerns that occur as subtasks in
various problem solving systems. His methods could be
used to devise trial solutions to new problems that are
analogous to known solutions of corresponding problems.
Another very difficult line of development would be to
work verbal analogy problems. A very effective program of

SOLOMONOFF: ARTIFICIAL INTELLIGENCE

1691

this sort would require an understanding of semantics that
is well beyond our present knowledge. However, an attempt
at such a program could do much toward indicating clearly
many of the problems of semantics.

111. INDUCTIVE INFERENCE

" Learning from experience, discovering patterns in pic-
tures or sequences of words, and the recognition of analogies
are all aspects of induction, a problem that runs through
almost all artificial intelligence research. I will first discuss
some theoretical work in this field and then some attempts
to mechanize induction.

There are several important problems involved in devis-
ing a machine that can, in principle, discover and use an
arbitrarily chosen concept for prediction and decision
making,

The first problem is to find regularities in a body of data.
Amarel [4], [5], Simon [65], Kilbrun [38], Hormann [33 -
[36], and Abrahams et al. [2] have done some of the more
interesting work in this area.

Next, having found this “regularity,” how is it to be used
to predict the future, or be used to influence future decision?
If several regularities are found, how can they be combined
to give better predictions? If we have one regularity with a
small a priori likelihood but much empirical data for it,
what weight shall we give to its predictions relative to those
of another regularity of very high a priori likelihood, for
which we have much less empirical data? How are these a
priori likelihoods to be computed ?

A very important problem is that of describing “‘regular-
ities” or *“‘concepts” in the most general possible way, so one
is certain that the nature of concepts accessible is not being
limited by purely linguistic constraints.

Solomonoff [72], [73] has devised several theories of in-
duction that attempt to answer these questions in a general
manner. Later work has made it seem likely that these
theories are all mathenratically equivalent.

All induction problems can be shown to be equivalent to
extrapolating a long sequence of symbols, S, this sequence
containing all data to be used in the prediction.

Consider a universal Turing machine, or a general pur--
pose computer with an infinitely expandable memory. Cer-
tain strings when presented to this computer as input, will
produce a string that starts out with the sequence S, and
continues. Each such continuation can be regarded as a
prediction obtained by its input string. To obtain the prob-
ability of a specific continuation, we must weigh all of the
predictions we have obtained. One of the theories. gives
them a weight proportional to the “likelihood” of the input
string that caused them. For a binary input string of length
N, this weight will be about 2~V

An approximate prediction can be obtained using only
the minimum length input. This is equivalent to saying that
the continuation is most likely which has the shortest *‘de-
scription”—“description” being equivalent to computer in-
put string. This single best prediction approach is equivalent
to that of Van Heerden [78].

Another of the four theories extrapolates a sequence by

1692

hypothesizing the sequence was produced by a universal
Turing machine with random input. An important kind of
approximation to this is the work of Booth [10}-[12] on
finite state machines with random inputs.

The present status of Solomonoff’s formulation of induc-
tion is rather uncertain. It has been applied in an approxi-
~ mate way to several prediction problems, and appears to

give reasonable answers. It secems directly applicable to
several problems in pattern recognition and discovery, but
has not yet been applied to these or any other practical
problems.

A problem in which it might be used to obtain quantita-
tive probability values, is in a more exact analysis of the
work of Kilburn et al. {38], on extrapolation of sequences of
symbols. They start with a short sequence of letters or
numbers and try to predict the next member of the series.
Short sequences of specially devised instructions are used as
computer inputs, in. attempts to produce the known se-
quence as output. If they succeed they use the successful
input sequence to predict the next symbol of the sequence to
be extrapolated.

Their search for satisfactory sequences of symbols is
essentially random, with strong bias toward short codes. As
the machine is used to extrapolate larger numbers of se-
quences, statistics on various instructions and on parts of
instructions are collected and used to guide future searches
for codes. These statistical constraints increase the search
efficiency a great deal.

It is not altogether clear as to whether the set of computer

instructions they use is “‘complete”—in the sense of being
" able to express any conceivable program. However, if they
did use a complete set of instructions, their method of in-
duction would be an approximation to Solomonoff’s induc-
tion theory.

The methods used by Kilburn et al. would not be directly
applicable to the extrapolations of much complexity (i.e.,
those that involve many instructions to describe them),
since the search process would take too long. However, they
had many good ideas on how to continue the research and
it is unfortunate that they did not do so.

A more recent attempt to extrapolate sequences of sym-
bols was made by Abrahams et al. [2] (for earlier, more
accessible work, see Pivar [57] and Fredkin [28]). This pro-
gram consists of a set of “workers” which are called upon
in turn to look for a special kind of regularity in the se-
quence. The kinds of “workers” they use are rather interest-
ing. They recognize polynomial sequences and some ex-
ponential types with no difficulty, but they also try to “fit”
programs that don’t fit exactly, then, using the errors as a
new sequence, try to fit a program to them.

As it is, the workers are fixed. If none of the workers find
a good fit for a sequence, the program does not try to devise
new workers to do the job by combining old ones. Also, the
program makes only single extrapolations—it does not give
probabilities—even when it is clear that there are several
programs that will fit the data about equally well—each
extrapolating somewhat differently.

Fogel et al. [25], [26] have used an interesting variant of

PROCEEDINGS OF THE IEEE

DECEMBER

Kilburn’s [38] sequence extrapolation system. Instead of
using a randomly constructed sequence of computer in-
structions to express the known data and extrapolate, they
use a small finite state machine, also somewhat randomly
constructed using a hill-climbing technique.

A finite state machine having N input symbols and S dif-
ferent states, can be characterized by a Nx S matrix,
M (i=1,2, - N,j=1,2,- - S).

M ;; has 2 components. When the machine has input sym-
bol i and is in state j, the first component tells what state
the machine will go to next. The second component tells
what its output symbol will be.

Since any digital computer is a finite state machine, we
see that the possible input-output relationships in this de-
vice are completely unrestricted—if we allow enough states.

The program operates by feeding a sequence of symbols
containing certain regularities into a small (having few
states) finite state machine. A “score” is given to the
machine which is high if the machine’s output usually pre-
dicts the next input symbol.

The original machine is then “mutated” slightly, by
changing the number of states or otherwise modifying the
state transition matrix. The new “offspring” machine is
then tested. If its score is better than that of the parent, it
becomes the new parent of mutated offspring. If its score is
not better, then the original parent has another mutated
offspring.

This hill-climbing process continues until a machine is
obtained with a sufficiently high score.

Various refinements of this technique are also used—
e.g., a parent may be allowed to have children until 2 or
more have a higher score than the parent. This branching
can be allowed to continue, retaining the “best” 100 ma-
chines, say, at all times—which reduces-the likelihood of
local maxima, a disease common to hill climbers.

This mutation and testing process can be simulated very
rapidly on a computer, since finding the next state and
output symbol requires only a table look up—normally a
very fast operation. '

In 1958 and 1959, Friedberg [29], [30] devised programs
that mutated sequences of computer instructions, one in-
struction at a time, in attempts to find a sequence that would
consistently accomplish a certain simple task. The program
was, however, unable to solve rather simple problems in a
reasonable time. This has been interpreted by Minsky and
Selfridge [47] as being due to the “Mesa” phenomenon. In
certain hill-climbing situations, such as Friedberg’s, small
changes in one’s parameters produce little or no changes in
the result, but changes over a certain size produce very large
changes in the results. In such cases, hill climbing of the
usual sort is not effective. One method to solve such prob-
lems is to use different representations of them—essentially
what Fogel et al. have done.

There are, however, several difficulties in their system. A
relatively minor one is the penalty for complexity of ma-
chine that is incorporated into the “score” that the machine
makes on a prediction run. At the present time, this penalty
is rather arbitrarily set at a level proportional to the number

1966

of states used. Fogel says that one can make this penalty
depend on whatever is “‘costly” if one likes, so if one has
limited memory, one can penalize a machine for using much
of it.

It is my impression that if the machine is to be used for

induction, then the penalty for complexity is by no means
arbitrary, but can be-.computed—in some cases with exact-
ness. Use of any other penalty function will result, on the
average, in poorer predictions (Solomonoff [72], [73]).

Perhaps the most serious difficulty in the entire system is
its lack of mechanisms corresponding to some of the pro-
cesses involved in sexual reproduction and recombination
of useful sets of characteristics. While it is possible to de-
velop machines to solve simple problems by mutating a few
states at a time, this process is far too slow to obtain solu-
tions to complex problems. In natural evolution this diffi-
culty is overcome by many special mechanisms (Darlington
[13]; seealso Stebbins [74] ch. 3 for a simple discussion of
a few of the mechanisms)..Some of the more important of
these involve the preservation of subsequences of genes
(which correspond to subroutines) that have been useful. In
sexual reproduction if we neglect cross-over, the offspring
will acquire long sequences of genes as units—i.e.,. the
chromosomes. ‘

On theaverage, half of these units will be from one parent,
half from the other.

In terms of machines, this may mean that the child ma-
chine will acquire certain submachines from one parent,
and certain from the other. If “crossing over” is allowed, the
chromosomes themselves contain shorter substrings of in-
structions that tend to remain together in the offspring.

The mechanisms of chromosome breakage, inversion,
and crossing over work in a manner that tends to push
synergistic! genes together on the chromosome.

So far, Fogel et al. have not tried any of the mechanisms
used by organic evolution other than mutation. They do,
however, discuss the possibility of including some of them.
For “‘sexual reproduction” of machines that have binary
signals for their prediction outputs, they propose to “mate”
3 of the machines, making a larger machine that uses a
majority decision for predietion. Clearly, this kind of mat-
ing cannot occur very often, since the number of states per
machine would be cubed each generation! One might follow
each sexual mating by many generations in which the
“score” for performance gives a large reward for reduction
in the number of machine states. It is not clear what the
overall effect would be. ‘ :

Another idea in the direction of recombination is their
suggestion that the Krohn-Rhodes [41] theory of decom-
position of automata be used to divide machines into parts,
so that the parts could be recombined as are the sets of
characteristics described by chromosomes. Certainly this is
an interesting idea. Though at first the decompositions
would tend to be useless for recombination they could later

! Two things are “synergistic” if their occurrence together produces
more beneficial effect than the sum of the benefits they give when they occur
separately.

SOLOMONOFF: ARTIFICIAL INTELLIGENCE

1693

become useful in this way if a suitable evolutionary milieu
were provided. Such a milieu would have to provide a large
enough pool of organisms to mate with one another; as well
as suitable individual survival criteria.

The method of Fogel et al. should not be regarded in its
present state as being particularly good for working any but
the simplest problems. To work more difficult problems,
the same difficulties must be overecome that are inherent in
other problem solving systems. It is necessary to devise a
training sequence. of tasks with small enough “conceptual
jumps” in the sequence so that the learning entity can fol-
low them. Heuristic devices must be found for each kind of
conceptual jump, and these heuristics must be expressed
within the learning system being used.

In simulation of evolution much of the successful re-
search will probably center around devising good kinds of
mutationssand finding methods to select and preserve good
sets of characteristics for recombination.

The promise of artificial evolution is that many things are
known or suspected about the mechanisms of natural evolu-
tion, and that these mechanisms can be used directly or in-
directly to solve problems in their artificial -counterparts.
For artificial intelligence research, simulation of evolution
is incomparably mere promising than simulation of neural
nets, since we know practically nothing about natural
neural nets that would be at all useful in solving difficult
problems. . '

Research in simulation of evolution has, however, been
very limited in both quantity and quality. The few workers
who have used this approach to solve problems have
usually used mutation alone, or have used mutation with
sexual reproduction, ignoring all but the most blatant (and
usually the least important) features of sexual reproduction.

Simon and Katovsky [64] and Feldman [24] have studied
human extrapolation of sequences of symbols. Their goals
in these studies were to understand human behavior and
not to discover how to do very difficult extrapolations. The
models they used for induetion were very simple ones, and
of only a little interest for the solution of difficult problems.

Foulkes [27] extrapolates sequences of symbols by using
symbol transition probabilities from n-tuples of symbols
that have occurred in the past. As the sequence being -
extrapolated grows in length, better statistical data is ob-
tained for longer n-tuples. The value of # can vary for the
various n-tuples, and is kept as large as is consistent with
the amount of statistical data available for each n-tuple.

A system related to Foulkes’ but much more complex is
that of Uhr [77], which will be discussed in the next section.

The problem-in induction is to find regularities in a body
of data and use them for. prediction. In psychology, the
discovery of such regularities is called concept formation. In
much research on human concept formation, the subject is
given a set of objects that have been divided into two classes
by some classification system unknown to him. The task of
concept formation is to discover the unknown classifica-
tion rule.

Hunt and Horland [37] work with very simple classifica-
tion schemes, the most complex being the alternation of two

1694

conjunctions of properties. An example would be “The set
of all objects that are either red and large and sweet or blue
and triangular.” They found that human subjects readily
discover concepts of this sort.

Kochen [40] has devised a program for discovering more
complex concepts of the same general type as those used by
Hunt and Horland—e.g., a classification scheme that is the
alternation of five conjunctions of six binary properties.

Such a concept can be readily represented by a computer
program that classifies short strings of randomly selected
binary symbols in accord with this concept. If with each
such random string, this classification information is given
to Kochen’s program, it will eventually determine (usually
for a nonexhaustive set of examples) the exact nature of the
classification system.

If there is any noise in the classification data given to
Kochen’s program, it will not find the proper concept and
there is no clear way to modify it to deal with noisy data.

This is a very serious deficiency of Kochen’s work. Very
few induction problems in the real world are of the type that
his programs deals with. On the other hand, the most com-
plex sources of data can often be approximated by simple
concepts corrupted by noise. These simple approximation

concepts can then be modified to construct more complex -

concepts to fit the data better.

A program for discovering concepts such as the ones
Kochen deals with, but that have been corrupted by noise,
could be an important advance in artificial intelligence.

IV. LINGUISTICS AND PATTERN RECOGNITION

We would like to be able to communicate directly with an
intelligent machine, i.e., to have our written English im-
mediately transformed by the machine into a form that it
could use. One may regard this input problem as an im-
portant kind of mechanical translation, from human lan-
gugage into a model within the machine that is used to store
information in more usable form. I will not deal further
with this particular problem but will refer to reviews by
Simmons [63] on answering English questions by computer
and by Bobrow [9] on syntactic analysis of English by
computer.

V. M. Glushkov, in an address at the 1965 IFIP meeting
in New York, mentioned an interesting kind of mechanical
translation by induction, that was done in the Soviet Union.
A small set of translation pair sentences from Hungarian to
Basque were given as data to extrapolate from. A minimal
(in some sense) machine was then constructed to transform
the sample Hungarian sentences into the corresponding
Basque. This minimal machine was then found to translate
new Hungarian sentences into Basque with some accuracy.
This work is much in the spirit of Fogel et al.

Another interesting inductive approach to mechanical
translation is that of Faulk [21], [22]. Very loosely speak-
ing, his idea is: Suppose we are given sentences 4, B and
C in English, with their corresponding translations a, b, and
¢ in Russian. We note that if 4 is “similar” to B (in an as
yet undefined sense) then a will tend to be “similar” to b.
If we quantify the idea of similarity, then we expect S 3,
the similarity of 4 to B, to be about the same as S,,,.

Suppose we are given a new English sentence, D, and we

PROCEEDINGS OF THE IEEE

DECEMBER

want to find its translation. Then it is Faulk’s idea that we
should try to find a Russian sentence d, such that
Saa = Saps Spa ™ Spp and S, ~ Scp.

To find such a sentence, we start with a first approxima-
tion, and continue to make slight changes in it, retaining
those changes that give a better fit—a kind of hill-climbing
procedure.

Faulk has had success in translating simple sentences
using this procedure and a relatively simple form for S.
Whether it can be applied to more complex sentences will
depend in part on what sort of characteristics the similarity
criterion S is based on. The hill-climbing procedure can be
faster than most, since by analyzing S, we can determine to
some degree the cause of the “misfit,” and make appropriate
corrections.

Whether this method will ever give very good translations
for much ordinary text is uncertain, but as a method of in-
duction, it can be generalized to a great variety of problems.

Another induction system built around language transla-
tion is that of Uhr [77]. It is meant to be a preliminary model
for a very general mechanism to learn the relationship be-
tween any given set of input-output pairs. In the models
discussed, these input-output pairs are, for example, sen-
tences in English and the corresponding sentences in French
and the task of the program is to find a set of translation
rules between them. The most advanced of the programs
discussed forms strings of characters, which it regards as
“patterns.” At first, such patterns are formed of strings that
have simple mappings into corresponding patterns of the
translation language. Classes of such patterns are formed
that can be used for ambiguity resolution of translations or
as contexts to control other translation rules. These classes
are concatenated with one another to form tentative
new classes to be used in similar ways. Certain rules are
given for inventing new translation rules and discarding
others.

Many of the ideas suggested by Uhr seem very good. Two
of his preliminary systems have been programmed. A third
had not been at the time of his paper. The paper is rather
unclear on many points, so it is difficult to make any de-
tailed criticism of his most advanced system, but if he suc-
ceeds in satisfactorily implementing the ideas he mentions,
he will have made an important step toward artificial in-
telligence.

Grammatical models may also be used for induction.
Suppose one is given a set of strings of symbols, and the
problem is to extrapolate this sequence—to devise a rule to
determine if an arbitrary new string is a-member of the set
or not. Early approaches. of Solomonoff [69], [70] to
this problem, -consisted of devising a grammar for a lan-
guage in which the sample strings were “‘acceptable sen-
tences.” The idea of language was generalized somewhat, so
that the translation pairs of sentences from two ordinary
languages, constituted the ““‘acceptable sentences™ in a
“translation language,” which could then be used to trans-
late between the two ordinary languages. An example was
given of how such a language could have something like a
phrase structure grammar.

1966

These two papers tried to show how to find a set of gram-
mar rules if one is given some initial sentences and a
“teacher” who is allowed only to tell if a sentence proposed
by the machine is acceptable or not. Later, Solomonoff
({731, pp. 240-253) devised a criterion for optimization of
a grammar for a set of strings in which no “teacher” is avail-
able, with some suggestions as to how this grammar might
be found. This approach obtains probability values for
membership of arbitrary strings in the class to be extrapo-
lated. Kirsch [39] also discusses the use of grammars for

induction.

A good generalization of the grammar concept has been

made by Narasimhan [48], who uses it for multidimensional
pattern recognition. Preliminary work has been with recog-
nition of letters and of nuclear events on bubble chamber
photographs. Getting rid of “noise’” on bubble chamber
photos before using the grammar to recognize events has
been an important initial problem for Narasimhan. Ideally,
however, the grammar should be of sufficient power to be
able to generate the noise as well as the signal. Neverthe-
less, tentative removal of noise before analyzing the data
with respect to an approximate “‘noiseless’” grammar might
be a more practical approach to finding the optimum
analysis for the more general, noise-including grammar.

Similar in spirit to Narasimhan is the approach of Eden
[15] to the recognition of characters in cursive handwriting.
He devises a set of elementary strokes and possible distor-
tions of them, then asks how the observed writing could
have been created from these strokes and distortions. This
is equivalent to using a generative grammar to categorize
the characters.

Uhr and Vossler [76] describe a pattern recognizing sys-
tem that devises its own operators and then tries to assign
optimum weights to them. '

Their input patterns are in the form of characters or other
two dimensional patterns and are represented on two di-
mensional 20 x 20 binary arrays. Patterns on the binary
array are first centered to some extent, then processed by
various 5 x 5 template operators. These operators are moved
over all positions in the 20 x 20 array, and a “1”" is assigned
to those positions in which the templates match ade-
quately. The resultant patterns of “1’s” is blurred some-
what by describing it in terms of four moments. Classifica-
tion (i.e., recognition) of an input pattern is made by com-
paring the four moments obtained for it using a given
operator, with corresponding moments obtained on pat-
terns of known classification. These comparisons are made
for several operator types, and the judgments of each are
given suitable weights to make a final classification.

Learning is of two types. First, the weight of each of the
operators is slowly changed to reflect its effectiveness in
classification—mindful of Samuel’s work on checkers.

Another important kind of learning is in the program’s
devising its own operators or templates. The 5 x 5 templates
have 25 trinary symbols in them—~0, 1, and “don’t care”—
so there are 32° such templates possible. It is not necessary
to examine all of them to obtain useful ones, since only
the template forms that actually occur as parts of input pat-
terns are of any possible utility. A template is usually formed
by selecting a 5 x 5 array at random, from the 20 x 20 input

SOLOMONOFF: ARTIFICIAL INTELLIGENCE

1695

patterns. If it is found that this pattern is not good for pat-
tern discrimination, it is discarded and a new template is
selected.

The system had been originally designed for recognition
of two dimensional graphic patterns and was fairly success-
ful in this. It was then tried on two dimensional sound
spectrograms of spoken words, and was to some extent
able to classify them properly.

While the system does indeed improve its own per-
formance in a useful manner, and it is at least as good as
any other template matching system, it must be realized
that only a very narrow range of pattern types can be classi-
fied by a-single layer of template matching.

Much has been made of the system’s effectiveness for
speech recognition—a field in which it was not specifically
designed to operate. A more conservative conclusion is that
recognition of words through speech spectrograms is but
another area where single layer template transformations
are of value.

Template matching systems correspond to “rewrite rules”
in mathematical logic. Any describable transformation can
be expressed as a set of such rewrite rules, and any trans-
formation can be expressed by a sufficiently large number of
layers of template matching transformations.

Uhr and Vossler combine their template operators to
make new operators that may conceivably be more power-
ful than single-layer template transformations, but their
paper does not give enough detail to tell whether this is
indeed so. ‘

V. HARDWARE AND SOFTWARE

Since 1960 there have been continuing developments of
both hardware and software. Some developments that
have most affected artificial intelligence research are the
continued decrease of cost per operation of computers, the
development of list processing languages of many different
sorts, the development of time shared facilities and related
software, and the greater availability of very large fast
memories.

The overall effect of these has been to make experimental
research in this field less expensive, and much easier to
implement for both initial programming and debugging.
Larger fast memories have made possible larger, more
complex programs than were feasible before.

It is my feeling, however, that much of the very important
work that needs to be done is of a purely theoretical nature,
and is quite independent of these more tangible develop-
ments. :

VI. OTHER VIEWS AND REVIEWS

The opinions and predilections of the author have biased
this review toward certain areas of artificial intelligence. 1
want to mention some other reviews, each having an
emphasis somewhat different from my own.

‘The reference volume [79], edited by Feigenbaum and
Feldman, contains a broad coverage of reprints of im-
portant papers on heuristic programming. Most of these
are of the same general type as the research discussed in
the present review, but papers on simulation of human be-
havior are also included. This volume has the important

1696

Minsky [44] review, as well as his well-indexed bibliography
with references up to 1962.

Feigenbaum’s 1963 review [23] covers about the same
type of research as the Feigenbaum-Feldman book, but

discusses a larger number of papers rather briefly, con-

centrating on the period 1960 to 1963.

Newell and Ernst [51] again cover the same type of re-
search but discuss the generality of the various methods
used thus far in heuristic programming, and list the general
heuristic types used by different researchers.

Pask’s [55] long review is on self-organizing systems and
artificial intelligence. A self-organizing system consists of a
set of elements (typically these might be natural or artificial
neurons, or some forms of automata) initially loosely
organized. When placed in a suitable environment, the
organization of the elements becomes more constrained in a
manner that enables the system to solve various problems.

Although he is relatively uncritical of the research he
discusses, Arbib [8] gives a good exposition of many of the
ideas involved in Turing machines, finite automata, neural
nets, reliable automata and information theory. He gives
simple proofs for Gddel’s theorem and for the unsolvability
of the halting problem. It is often claimed that these two
results demonstrate conclusively the necessary superiority
of man’s brain over any possible machine. It would be well
for the worker in this field to be familiar with the exact
nature of these theorems, so that he may judge for himself
the validity of such claims.

Sebestyen’s [61] book deals with a now popular approach
to character recognition, in which classes of objects in
hyperspace are formed by dividing it into sections with
various hypersurfaces.

Abramson et al. [3] review pattern recognition and some
types of machine learning for the period 1960 to 1963. The
general methods of Sebestyen are discussed, as well as

“methods more narrowly applicable to recognition of two-
dimensional characters and human speech. Both Sebestyen
and Abramson et al. have extensive bibliographies.

Simmons [63] describes in some detail fifteen different
systems for answering questions in English by computers.
Bobrow’s [9] review of computer syntactic analysis gives
some background necessary for the work discussed by
Simmons.

Eden’s [16] review of human information processing
covers the period 1959 to 1963. Prominent in this research
are the methods of information theory, linguistics and sta-
tistical decision theory. The observation of “property
filters™ in the perceptile apparatus of various animals has
confirmed some early theoretical models by Pitts and Mc-
Culloch [56].

Current Research and Development in Scientific Docu-
mentation 14 (Anonymous, [1]) contains reviews, usually by
the principal investigator, of a very large number of research
projects on various approaches to artificial intelligence and
closely related studies in linguistics, mechanical translation,
and information retrieval. The report contains extensive
bibliographic references, is well indexed, and covers work
in many foreign countries as well as in the United States.

Current journals and conference proceedings having fre-
quent papers on artificial intelligence are:

PROCEEDINGS OF THE IEEE

DECEMBER

1) Information and Control
2) Proc. SJCC and FICC
(Spring and Fall Joint Computer Conferences)
3) Proc. IFIP (International Federation for Informa-
tion Processing)
4) Journal of the Association for Computing Machinery
J. ACM)
5) Communications of the Association for Computing
Machinery (C. ACM) -
6) Behavioral Science ,
7) IEEE Transactions on Information Theory
8) IEEE Transactions on Electronic Computers
9) IEEE Transactions on Human Factors
10) IEEE Transactions on System Science and Cyber-
netics.

BIBLIOGRAPHY

[1] Anonymous, “Current research and development in scientific docu-
mentations, 14,” National Science Foundation, Washington, D. C.,
Rept. NSF-66-17. 1966.

[2] P. Abrahams, J. Hansen, and M. Pivar, “Final report, research in
sequence analysis,” Information International, Inc., Cambridge,
Mass., April 1965.

[31 N. Abramson, D. Braverman, and G. Sebestyen, “Pattern recogni-
tion,” IEEE Trans. on Information Theory, vol. IT-9, pp. 257-261,
October 1963.

{4} S. Amarel, “An approach to automatic theory formation,” in Prin-
ciples of Self-Organization, Von Foerster and Zopf, eds. New York:
Pergamon Press, 1962. -

[S] —, “On the automatic formation of a computer program that
represents a theory,” in Self-Organizing Systems, Yovits, Jacobi, and
Goldstein, eds. Washington, D. C.: Spartan Books, 1962.

, “‘On the mechanization of creative processes,” IEEE Spectrum,

vol. 3, pp. 112114, April 1966.

, “On machine representations of problems of reasoning about
actions,” RCA Labs., Princeton, N. J., preliminary rept., 1966.

[8] M. Arbib, Brains, Machines and Mathematics. New York: McGraw-
Hill, 1964.

[9] D. Bobrow, “Syntactic analysis of English by computer—a survey,”
Proc. JFCC, vol. 24, pp. 365-387, 1963.

{10] T. Booth, “Random input automata,” presented at the International
Conference on Microwaves, Circuit Theory and Information Theory,
Tokyo, 1964.

[11] ——, “Statistical properties of random digit sequences,” presented
at the 7th Annual Symp. on Switching and Automata Theory, 1965.

[12] ——, “Random processes in sequential networks,”” 1965 Proc. IEEE
Symp. on Signal Transmission and Processing, pp. 19-25.

[13] C. Darlington, The Evolution of Genetic Systems. New York: Basic
Books, 1958.

[14] R. M. De Baum, Chem. and Engrg. News, vol. 42, no. 25, 1964.

[15] M. Eden, “Handwriting and pattern recognition,” IRE Trans. on
Information Theory, vol. IT-8, pp. 160-165, February 1962.

, “Human information processing,” [EEE Trans. on Informa-
tion Theory, vol. IT-9, pp. 253-256, October 1963.

[17] H. Eisner, Operations Res., vol. 10, p. 115.

[18] G. Ernst, Ph.D. dissertation, to be published.

[19] T. Evans, “A heuristic program of solving geometric analogy prob-
lems,” Ph.D. dissertation, Mass. Inst. Tech., Cambridge, Mass., 1963.
Also available from AF Cambridge Research Lab., Hanscom AFB
Bedford, Mass. : Data Sciences Lab., Phys. and Math. Sci. Res. Paper
64, Project 4641.

, “A heuristic program to solve geometric-analogy problems,”
1965 Proc. SJICC, vol. 25, pp. 327-339.

[21] R. Faulk, “An inductive approach to mechanical translation,”
Commun. ACM, vol 1, pp. 647-655, November 1964,

, ““The phenomenon of interlingual correspondence: a quantita-
tive formulation of the translation problem for natural languages,”
IBM Watson Research Center, Yorktown Heights, N. Y, res. rept.

23] E. Feigenbaum, *“‘Artificial intelligence research,” IEEE Trans. on
Information Theory, vol. IT-9, pp. 248-253, October 1963.

[24] J. Feldman, “Simulation of behavior in the binary choice experi-
ment,” in Computers and Thought, Feigenbaum and Feldman;, eds.
New York: McGraw-Hill, 1963, pp. 329-346.

[25] L. Fogel. A. Owens, and M. Walsh, “Artificial intelligence through a

[6]
7

[16]

(20]

22]

1966

simulation of evolution,” in Biophysics and Cybernetic Systems,

Maxfield, Callahan, and Fogel, eds. Washington, D. C.:Spartan

Books, 1965.

, Artificial Intelligence Through Simulated Evolution. New York:
Wiley, 1966.

[271 J. D. Foulkes, ““A class of machines to determine the statistical struc-
ture of a sequence of characters,” 1959 IRE WESCON Conv. Rec.,
vol. 3, pt. 4, pp. 66-73.

[28] E. Fredkin, “Techniques using LISP for automatically discovering
interesting relations in data,” in The Programming Language LISP,
Information International, Inc., Cambridge, Mass., March 1964.

[29]1 R. Friedberg, “A learning machine, pt. I,” IBM J. Res. and Dev.,
pp- 2-13, January 1958.

[30] R.Friedberg, B. Dunham, and J. North, ‘A learning machine, pt. I1,”
IBM J. Res. and Dev., pp. 282-287, June 1959.

[31] H. Gelernter, “Realization of a geometry theorem-proving ma-
chine,” in Information Processing. Paris: UNESCO, 1960. Also in
Computers and Thought, Feigenbaum and Feldman, eds. New York:
McGraw-Hill, 1963.

[32] J. Hawkins, “Self organizing systems—a review and commentary,”
Proc. IRE, pp. 31-48, January 1961.

[33] A. Hormann, “Programs for machine learning,” pt. I, Information
and Control, pp. 347-367, December 1962.

[34] ——, “Programs for machine learning,”
Control, pp. 55-77, March 1964.

[35] —, “How a computer system can learn,” IEEE Spectrum, vol. 1,
pp. 110-119, July 1964.

[36] ——, *“Gaku, an artificial student,” Behavioral Sci., p. 88, January
1965.

{37] E. B. Hunt and C. I. Horland, “Programming a model of human con-
cept formation,” in Computers and Thought, Feigenbaum and Feld-
man, eds. New York: McGraw-Hill, 1963, pp. 310-325.

[38] T. Kilburn, R. Grimsdale, and F. Sumner, ‘“‘Experiments in machine
learning and thinking,” in Information Processing Proc. of ICIP,
1959. Paris: UNESCO, 1960.

[39] R. Kirsch and B. Rankin, “Modified simple phrase structure gram-
mars for grammatical induction,”” Nat’l Bureau of Standards, Wash-
ington, D. C., Rept. 7890, May 1963.

[40] M. Kochen, “Some mechanisms in hypothesis selection,” in 1962
Proc. Symp. on Mathematical Theory of Automata. Brooklyn, N. Y.:
Polytechnic Press, 1963, pp. 593-614.

[41] K. Krohn and I. Rhodes, “Algebraic theory of machines,” in 1962
Proc. Symp. on Mathematical Theory of Automata. Brooklyn, N. Y.:
Polytechnic Press, 1963.

[42] T. Marill, A. Hartley, D. Darley, T. Evans, B. Bloom, D. Park, and
T. Hart, “Cyclops-1: a second generation recognition system,” in
AFIPS Conf. Proc.,vol. 24. Washington, D. C.: Spartan Books, 1963.

[43] J. McCarthy, “Programs with common sense,” in Mechanization of
Thought Processes, vol. 1. London: Her Majesty’s Stationery Office,
1959.

[44] M. Minsky, ““Steps toward artificial intelligence,” Proc. IRE, vol. 49,
pp- 8-30, January 1961. Also in Computers and Thought, Feigen-
baum and Feldman, eds. New York: McGraw-Hill, 1963.

[45]7 ——, “Descriptive languages and problem solving,” Proc. WJCC,
vol. 19, pp. 215-218, 1965.

[46] ——, “Matter, mind and models,” in Jnformation Processing, vol. 1.
Washington, D. C.: Spartan Books, 1965.

[47] M. Minsky and O. Selfridge, ““Learning in random nets,” in Proc.
4th London Symposium on Information Theory, C. Cherry, ed.
London: Butterworths, 1961.

[48] R.Narasimhan, “Syntax-directed interpretation of classes of events,”
Commun. ACM, pp. 166-172, March 1965.

[491 A. Newell, “Some problems of basic organization in problem solving
programs,” in Self~-Organizing Systems, Yovits and Cameron, eds.
New York: Pergamon, 1963.

[50] ——, “Learning, generality and problem solving,” in Information
Processing 1962, C. M. Popplewell, ed. Amsterdam: North Holland,
1963.

[51] A. Newell and G. Ernst, “The search for generality,” Proc. IFIP
Congress, vol.1, W. Kalenick, ed. Washington, D. C.: Spartan Books,
1965.

[52] A. Newell and H. Simon, “The logic theory machine—a complex
information processing system,” IRE Trans. on Information Theory,
vol. IT-2, pp. 61-79, September 1956.

[531 A. Newell, J. Shaw, and H. Simon, “Report on a general problem
solver,” in Information Processing.Paris: UNESCO. Also in Com-
puters and Thought, Feigenbaum and Feldman, eds. New York: Mc-
Graw-Hill, 1963.

(26]

pt. 1. Information and

1)

SOLOMONOFF: ARTIFICIAL INTELLIGENCE

1697

[54] , “A variety of learning in a general problem solver,” in Self-
Organizing Systems, Yovits and Cameron, eds. New York: Per-
gamon, 1960.

[55] G. Pask, “A discussion of artificial intelligence and self organiza-
tion,” in Advances in Computers, vol. 5, Alt and Rublnoﬂ eds. New
York: Academic Press, 1964, pp. 110-218.

[56] W. Pitts and W. McCulloch, “How we know umversals > Bull. Math.
Biophys., vol. 9, pp. 127-147, 1949.

[57] M. Pivar and M. Finkelstein “Automation, using LISP, of induc-
tive inference on sequences,” in The Programming Language LISP,
Information International, Inc., Cambridge, Mass., pp. 125~ 136
March 1964.

[58] A. Samuel, “Some studies in machine learning, using the game of
checkers,” IBM J. Res. and Dev., vol. 3, pp. 210-229, 1959. Also in
Computers and Thought, Feigenbaum and Feldman, eds. New York:
McGraw-Hill, 1963.

[59] ——, personal communication.

[60] J. N. D. Scott and D. K. Hopkins, *“Anticipating risks in research and
development,” New Scientist, pp. 159-161, January 21, 1965.

[61] G. Sebestyen, Decision Making Processes in Pattern Recognition.
New York: Macmillan, 1962.

[62] O. G. Selfridge, “Pattern recognition and modern computers,” 1955
Proc. WJCC, pp. 91-93.

[63] R. Simmons, *“Answering English questions by computer; a survey,”
Commun. ACM, pp. 53-70, January 1965.

[64] H. Simon and K. Katovsky, “Human acquisition of concepts for
sequential patterns,” Psychol. Rev., vol. 70, pp. 534-546, 1963,

[65] H. Simon, “Experiments with a heuristic compiler,” J. ACM, vol. 10,
pp. 493-506.

[66] S. Slagle, ““A heuristic program that solves symbolic integration prob-
lems in freshman calculus,” J. ACM, vol. 10, pp. 507-520, 1963. Also
in Computers and Thought, Feigenbaum and Feldman, eds. New
York: McGraw-Hill, 1963.

[67] J. Slagle, “An efficient algorithm for finding certain minimum-cost
procedures for making binary decisions,” J. ACM, pp. 253-264, July
1964.

[68] ——, “A multipurpose theorem proving heuristic program that
learns,” Lawrence Radiation Lab., Livermore, Calif., UCRL-12342
Rev. 11, AEC Contract W-7405-Eng-48, June 22, 1965.

[69] R. Solomonoﬁ “The mechanization of linguistic learning,”
Proceedings of the Second International Congress on Cybernetlcs
Namur, Belgium : 1960, pp. 180-193.

[70] ——, ““A new method for discovering the grammars of phrase struc-
ture languages,” in Information Processing. Paris: UNESCO, 1960,
pp- 285-289.

[717 ——, “Training sequences for mechanized induction,” in Self-
Organizing Systems, Y ovits, Jacobi, and Goldstein, eds. Washington,
D. C.: Spartan Books, 1961, pp. 425-434.

[72] ——, “A formal theory of inductive inference,” pt. I, Information and
Control, pp. 1-22, March 1964,

, “A formal theory of inductive inference,”
and Control, pp. 224-254, June 1964.

[74] G. Stebbins, The Process of Organzc Evolution. Englewood Cliffs,
N. J.: Prentice-Hall, 1966.

[75] F. Tonge, “A heurlstlc program for assembly line balancing,” in
Computers and Thought, Feigenbaum and Feldman, eds. New York:
McGraw-Hill, 1963.

[76} L. Uhr and C. Vossler, “A pattern recognition program that gen-
erates, evaluates and adjusts its own operators,” 1961 Proc. WJCC.
Alsoin Computers and Thought, Feigenbaum and Feldman, eds. New
York: McGraw-Hill, 1963.

[77] L. Uhr, “Pattern string learning programs,”
pp. 258-270, July 1964. :

[781 P. Van Heerdan, 4 General Theory of Prediction. Polaroid Corp.,

Cambridge, Mass., privately circulated report, 1963.

[73} pt. I, Information

Behavioral Sci., vol. 9,

The following volumes each contain several papers from the preceding
bibliography:

[79] Computers and Thought, E. Feigenbaum and J. Feldman, eds. New
York: McGraw-Hili, 1963.

[80] Self-Organizing Systems, Yovits and Cameron, eds. New York: Per-
gamon, 1960.

[81] Self-Organizing Systems, Y ovits, Jacobi, and Goldstein, eds. Wash-
ington, D. C.: Spartan Books, 1962.

[82] Information Processing 1962, C. M. Popplewell, ed. Amsterdam:
North-Holland, 1963.

[83] IEEE Trans. on Information Theory, vol. IT-9, October 1963.

